Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611714

RESUMO

Hepatic oxidative stress is an important mechanism of Cd-induced hepatotoxicity, and it is ameliorated by TMP. However, this underlying mechanism remains to be elucidated. To investigate the mechanism of the protective effect of TMP on liver injuries in mice induced by subchronic cadmium exposure, 60 healthy male ICR mice were randomly divided into five groups of 12 mice each, namely, control (CON), Cd (2 mg/kg of CdCl2), Cd + 100 mg/kg of TMP, Cd + 150 mg/kg of TMP, and Cd + 200 mg/kg of TMP, and were acclimatized and fed for 7 d. The five groups of mice were gavaged for 28 consecutive days with a maximum dose of 0.2 mL/10 g/day. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study show that compared with the Cd group, TMP attenuated CdCl2-induced pathological changes in the liver and improved the ultrastructure of liver cells, and TMP significantly decreased the MDA level (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection show that TMP significantly increased the levels of Nrf2 in the liver compared with the Cd group as well as the HO-1 and mRNA expression levels in the liver (p < 0.05). In conclusion, TMP could inhibit oxidative stress and attenuate Cd group-induced liver injuries by activating the Nrf2 pathway.


Assuntos
Cádmio , Fator 2 Relacionado a NF-E2 , Pirazinas , Masculino , Animais , Camundongos , Camundongos Endogâmicos ICR , Cádmio/toxicidade , Estresse Oxidativo , Fígado , RNA Mensageiro
2.
Small ; 19(8): e2206956, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504322

RESUMO

Co3 O4  with high theoretical capacitance is a promising electrode material for high-end energy applications, yet the unexcited bulk electrochemical activity, low conductivity, and poor kinetics of Co3 O4  lead to unsatisfactory charge storage capacity. For boosting its energy storage capability, rare earth (RE)-doped Co3 O4  nanostructures with abundant oxygen vacancies are constructed by simple, economical, and universal chemical precipitation. By changing different types of RE (RE = La, Yb, Y, Ce, Er, Ho, Nd, Eu) as dopants, the RE-doped Co3 O4  nanostructures can be well transformed from large nanosheets to coiled tiny nanosheets and finally to ultrafine nanoparticles, meanwhile, their specific surface area, pore distribution, the ratio of Co2+ /Co3+ , oxygen vacancy content, crystalline phase, microstrain parameter, and the capacitance performance are regularly affected. Notably, Eu-doped Co3 O4  nanoparticles with good cycle stability show a maximum specific capacitance of 1021.3 F g-1 (90.78 mAh g-1 ) at 2 A g-1 , higher than 388 F g-1 (34.49 mAh g-1 ) of pristine Co3 O4  nanosheets. The assembling asymmetric supercapacitor delivers a high energy density of 48.23 Wh kg-1  at high power density of 1.2 kW kg-1 . These findings denote the significance and great potential of RE-doped Co3 O4  in the development of high-efficiency energy storage.

3.
Adv Sci (Weinh) ; 9(30): e2203681, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031391

RESUMO

Perovskite solar cells (PSCs) suffer from significant nonradiative recombination at perovskite/charge transport layer heterojunction, seriously limiting their power conversion efficiencies. Herein, solution-processed chromium multioxide (CrOx ) is judiciously selected to construct a MAPbI3 /CrOx /Spiro-OMeTAD hole-selective heterojunction. It is demonstrated that the inserted CrOx not only effectively reduces defect sites via redox shuttle at perovskite contact, but also decreases valence band maximum (VBM)-HOMO offset between perovskite and Spiro-OMeTAD. This will diminish thermionic losses for collecting holes and thus promote charge transport across the heterojunction, suppressing both defect-assisted recombination and interface carrier recombination. As a result, a remarkable improvement of 21.21% efficiency with excellent device stability is achieved compared to 18.46% of the control device, which is among the highest efficiencies for polycrystalline MAPbI3 based n-i-p planar PSCs reported to date. These findings of this work provide new insights into novel charge-selective heterojunctions for further enhancing efficiency and stability of PSCs.

4.
Adv Mater ; 32(34): e2002344, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32686255

RESUMO

Ternary architecture is one of the most effective strategies to boost the power conversion efficiency (PCE) of organic solar cells (OSCs). Here, an OSC with a ternary architecture featuring a highly crystalline molecular donor DRTB-T-C4 as a third component to the host binary system consisting of a polymer donor PM6 and a nonfullerene acceptor Y6 is reported. The third component is used to achieve enhanced and balanced charge transport, contributing to an improved fill factor (FF) of 0.813 and yielding an impressive PCE of 17.13%. The heterojunctions are designed using so-called pinning energies to promote exciton separation and reduce recombination loss. In addition, the preferential location of DRTB-T-C4 at the interface between PM6 and Y6 plays an important role in optimizing the morphology of the active layer.

5.
Sci Rep ; 9(1): 19146, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844127

RESUMO

Probiotics are intended to provide health benefits when consumed, generally by improving or restoring the gut flora. The health problems of forest musk deer (FMD, Moschus berezovskii), a threatened species currently under conservation, restrict the development of captive musk deer. This study was conducted with the aim of analyzing the effects of forest musk deer compound probiotics (FMDPs) on weight, immunity performance and fecal microbiota in FMD by measuring average daily weight gain (ADG) and immune-related factors and by using high-throughput 16S rRNA sequencing to investigate differences in the fecal microbiota among the control group (4 samples), treatment group A (4 samples) and treatment group B (4 samples). The results showed that the ADG of treatment groups A and B was significantly higher than that of the control group (p = 0.032, p = 0.018). The increase in IgA and IgG levels in treatment group B was significantly higher than that in the control group (p = 0.02, p = 0.011). At the phylum and genus levels, the difference in bacterial community structure was significant between treatment group B and the control group. Both the alpha diversity and beta diversity results showed significant differences in the microbiota of FMD before and after FMDP feeding. In summary, the results indicated that FMDPs could promote the growth of growing FMD, improve immunity and balance the role of intestinal microbes.


Assuntos
Peso Corporal/efeitos dos fármacos , Cervos/imunologia , Cervos/microbiologia , Fezes/microbiologia , Florestas , Microbiota/efeitos dos fármacos , Probióticos/farmacologia , Animais , Biodiversidade , Contagem de Colônia Microbiana , Comportamento Alimentar , Lactobacillales/efeitos dos fármacos , Lactobacillales/crescimento & desenvolvimento , Filogenia , Análise de Componente Principal , RNA Ribossômico 16S/genética
6.
PLoS One ; 14(6): e0218164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194806

RESUMO

Expanding the southern range of herbaceous peony (Paeonia lactiflora Pall.) is a meaningful and worthwhile horticultural endeavor in the Northern Hemisphere. However, high temperatures in winter seriously hinder the bud dormancy release and flowering of peony in the more southern areas of subtropical and tropical regions. Resource introduction and hybridization can contribute to creating new cultivars with high adaptability in a warmer winter climate. In this study, three representative cultivars of P. lactiflora were screened for flowering capabilities and their annual growth cycles were observed to provide information needed for hybridization. Among these three cultivars, 'Hang Baishao' is the best adapted cultivar for southern growing regions and is unique in its ability to thrive in southern areas of N 30°00'. Pollen viability of 'Hang Baishao' was 55.60% based on five measuring methods, which makes it an excellent male parent in hybridization. Hybrid plants among these three cultivars grew well, but all of their flower buds aborted. Additionally, the ability of three growth regulators that advance the flowering of 'Hang Baishao' to promote an indoor cultivation strategy for improving peony application as a potted or cut-flower plant was tested. 5-azacytidine could impact the growth of 'Hang Baishao' and induce dwarfism and small flowers but not advance the flowering time. Gibberellin A3 promoted the sprouting and growth significantly, but all plants eventually withered. Chilling at 0-4°C for four weeks and irrigation with 300 mg/L humic acid was the optimal combination used to hasten flowering and ensure flowering quality simultaneously. These results can lay the foundation for future studies on the chilling requirement trait, bud dormancy release and key functional gene exploration of herbaceous peony. Additionally, this study can also provide guidance for expanding the range of economically important plants with the winter dormancy trait to the low-latitude regions.


Assuntos
Hibridização Genética/genética , Hibridização de Ácido Nucleico/genética , Paeonia/genética , Flores/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Transcriptoma/genética
7.
Nanotechnology ; 28(39): 395401, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28694391

RESUMO

Two-dimensional MoS2 materials have attracted more and more interest and been applied to the field of energy storage because of its unique physical, optical, electronic and electrochemical properties. However, there are no reports on high-stable transparent MoS2 nanofilms as supercapacitors electrode. Here, we describe a transparent 1T-MoS2 nanofilm electrode with super-long stability anchored on the indium tin oxide (ITO) glass by a simple alternate layer-by-layer (LBL) self-assembly of a highly charged cationic poly(diallyldimethylammonium chloride) (PDDA) and negative single-/few-layer 1T MoS2 nanosheets. The ITO/(PDDA/MoS2)20 electrode shows a transmittance of 51.6% at 550 nm and obviously exhibits excellent transparency by naked eye observation. Ultrasonic damage test validates that the (PDDA/MoS2)20 film with the average thickness about 50 nm is robustly anchored on ITO substrate. Additionally, the electrochemical results indicate that the ITO/(PDDA/MoS2)20 film shows areal capacitance of 1.1 mF cm-2 and volumetric capacitance of 220 F cm-3 at 0.04 mA cm-2, 130.6% retention of the original capacitance value after 5000 cycles. Further experiments indicate that the formation of transparent (PDDA/MoS2) x nanofilm by LBL self-assembly can be extended to other substrates, e.g., slide glass and flexible polyethylene terephthalate (PET). Thus, the easily available (PDDA/MoS2) x nanofilm electrode has great potential for application in transparent and/or flexible optoelectronic and electronics devices.

8.
ACS Appl Mater Interfaces ; 8(26): 16664-9, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27276274

RESUMO

Pt-based electrocatalysts are the most popular for direct alcohol fuel cells, but their performances easily deteriorate for the oxygen reduction reaction (ORR) at the cathode because of the alcohol crossover effect. Herein, we report the novel Pt electrocatalyst encapsulated inside nitrogen-doped carbon nanocages (Pt@NCNC), which presents excellent alcohol-tolerant ORR activity and durability in acidic media, far superior to the Pt counterpart immobilized outside the nanocages (Pt/NCNC). The superb performance is correlated with the molecule-sieving effect of the micropores penetrating through the shells of the nanocages, which admit the small-sized oxygen and ions but block the large-sized alcohols into the nanocages. This mechanism is confirmed by examining the size dependence of ORR and alcohol oxidation activities by regulating the micropores sizes. This study provides a promising strategy to develop the superior alcohol-tolerant Pt-based ORR electrocatalyst in acidic media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...